Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli.

نویسنده

  • E L Thomas
چکیده

In the presence of Escherichia coli, myeloperoxidase-catalyzed oxidation of chloride ion resulted in formation of long-lived chloramine and/or chloramide derivatives of bacterial components. The same amount of these nitrogen-chlorine (N-Cl) derivatives was obtained with either hypochlorous acid (HOCl) or the myeloperoxidase system, indicating that myeloperoxidase catalyzed the oxidation of chloride to HOCl. Identical killing was obtained with HOCl or the myeloperoxidase system. About 30 to 50% of the oxidizing equivalents of HOCl were detected as N-Cl derivatives of peptides or peptide fragments that were released from the bacteria. The apparent molecular weight distribution of the peptides decreased with increasing amounts of HOCl, suggesting that peptides were fragmented by oxidative cleavage of chloramide derivatives of peptide bonds. The remaining 50 to 70% of the oxidizing equivalents of HOCl were rapidly consumed in peptide bond cleavage or the oxidation of other bacterial components. There was a close correspondence between the oxidation of bacterial sulfhydryls and bactericidal action. The N-Cl derivatives were lost and the oxidation of bacterial sulfhydryls increased over a period of several h at 37 degrees C. These changes were accompanied by increased killing. The increase in sulfhydryl oxidation and killing could be prevented by washing the bacteria to remove the N-Cl derivatives. Therefore, the N-Cl derivatives could oxidize bacterial components long after the myeloperoxidase-catalyzed oxidation of chloride was complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation of Escherichia coli sulfhydryl components by the peroxidase-hydrogen peroxide-iodide antimicrobial system.

The chemical modification of bacterial components was studied following incubation of Escherichia coli with the peroxidase-hydrogen peroxide (H(2)O(2))-iodide (I(-)) antimicrobial system or with iodine (I(2)). The oxidation of cell sulfhydryls and the iodination of cell components were measured. Both the peroxidase system and I(2) oxidized sulfhydryls. When the I(-) concentration in the peroxid...

متن کامل

Redundant contribution of myeloperoxidase-dependent systems to neutrophil-mediated killing of Escherichia coli.

Neutrophil microbicidal activity is a consequence of overlapping antimicrobial systems that vary in prominence according to the conditions of the neutrophil-microbe interaction, the nature of the microbe, and its metabolic state. In this study, normal, myeloperoxidase-deficient, and respiratory burst-deficient (chronic granulomatous disease [CGD]) neutrophils killed Escherichia coli with equiva...

متن کامل

Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis.

The myeloperoxidase system of neutrophils uses hydrogen peroxide and chloride to generate hypochlorous acid, a potent bactericidal oxidant in vitro. In a mouse model of polymicrobial sepsis, we observed that mice deficient in myeloperoxidase were more likely than wild-type mice to die from infection. Mass spectrometric analysis of peritoneal inflammatory fluid from septic wild-type mice detecte...

متن کامل

Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli.

Neutrophils and monocytes employ a diverse array of antimicrobial effector systems to support their host defense functions. The mechanisms of action of most of these systems are incompletely understood. The present report indicates that microbicidal activity by a neutrophil-derived antimicrobial system, consisting of myeloperoxidase, enzymatically generated hydrogen peroxide, and chloride ion, ...

متن کامل

Penicillin-binding protein inactivation by human neutrophil myeloperoxidase.

Myeloperoxidase (MPO), H2O2, and chloride comprise a potent antimicrobial system believed to contribute to the antimicrobial functions of neutrophils and monocytes. The mechanisms of microbicidal action are complex and not fully defined. This report describes the MPO-mediated inactivation, in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, of a class of cytoplasmic membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 1979